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Abstract
The Mueller matrix is the transfer matrix in the Stokes algebra that describes
the polarization of natural light. This matrix is very versatile for the task of
characterizing the optical properties of liquid-crystal cells, since it can be
used for comparison with theoretical calculations, the determination of
material parameters and the modelling of the cell as an optical building
block for technological use. We have constructed a Mueller-matrix
spectrometer, with the ability to perform fast, dynamic measurements of the
Mueller matrix of small areas of liquid-crystal cells throughout the visible
range. To illustrate the potential of the instrument, dynamic measurements
on a ferroelectric-liquid-crystal cell are presented and analysed. The optical
measurements indicate that there is an asymmetry between the up and the
down state, tilted smectic layers and polarization reversal initiated at the
boundaries.

Keywords: Mueller matrix, liquid crystal, ferroelectric, Stokes vector,
polarization, spectrometer, spectrograph, xenon lamp, photodiode array,
visible range, retardation plates

1. Introduction

When we are working with optical devices which interact
with the polarization of light, we need adequate mathematical
tools. We then have the choice between the Jones [1] and
the Stokes [2] algebra for the description of the polarization.
The Jones algebra is adequate for coherent and monochromatic
light, whereas the Stokes algebra is better for natural light,
which mostly is incoherent, polychromatic and unpolarized.
If we have complete knowledge about the light, we have
only polarized light. However, our detectors and our eyes
have limited spatial resolution, limited wavelength resolution
and limited time resolution and frequency resolution. Fast
variations cannot be resolved, so we see only an incoherent
and unpolarized average. (Compare this with the concept
of entropy and ‘coarse-graining’!) The Stokes algebra can
describe partially polarized and unpolarized light. Thus, the
Stokes algebra is the correct algebra for most polarizing optical
devices that interact with the colour of light, in the way it is
experienced by human beings. In this algebra, we can use a

matrix, the Mueller matrix, to characterize the transmission (or
reflection) of a device for light at some wavelength and with
arbitrary polarization. The Mueller matrix description allows
us to separate those properties that depend on the orientation of
the device from those that are independent of the orientation.
This is useful in the comparison between experimental and
theoretical descriptions and in the computer modelling of
optical devices which are composites of several polarizing
devices. We will recapitulate and give a short introduction
to the necessary mathematical concepts and notation.

We describe the construction of a Mueller matrix
spectrometer, which is suitable for liquid-crystal research.
Liquid crystals are optically a bit special, since the polarization
properties can vary fast both temporally and spatially and
as a function of temperature. Often the sample is not
freely rotatable, as usually is the case with mineral samples.
Moreover, the geometrical configuration inside a liquid-crystal
cell is a continuous function which cannot be characterized
by a single variable. Thus, to characterize the liquid crystal,
it is not sufficient to measure one or two single parameters,
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Figure 1. The Poincaré sphere. Each point at the surface of the
sphere represents one polarization state for fully polarized light.
The points at the equator represent linear polarization, the poles
represent circular polarization and all other points represent
elliptical polarization.

or one or two components of the Mueller matrix. We need
and can make use of the full information. For a liquid-crystal
cell, measurement of the Mueller matrix will give us specific
information about the internal geometrical configuration of the
cell.

Our Mueller matrix spectrometer is able to measure the
Mueller matrix for a small area of a liquid-crystal cell in the
visible range. The illumination of the cell can be synchronized
with the driving voltage of the cell, so that the (repetitive)
switching process can be studied in detail, as a function of
time.

We also describe a set of measurements on a ferroelectric
liquid cell during switching, to illustrate the potential of
this kind of measurement. The switching exhibited a non-
trivial behaviour. We could indirectly determine the tilt of
the smectic layers relative to the substrates by comparing
the measurements with simple model calculations. This tilt
determination usually requires x-ray measurements [3]. The
tilt seems to force the molecules to switch on one side of
the smectic cone. Asymmetries between the up state and the
down state were found. It was also possible to verify that the
boundary layers switched before the bulk of the liquid crystal
did.

2. The theoretical background

2.1. The Stokes algebra

According to Stokes [2], general light could be seen as the
sum of one unpolarized part and one fully polarized part.
For unpolarized light, one parameter is needed to describe
the intensity. For polarized light three intensity parameters
are needed, so altogether four parameters are needed. These
parameters should be chosen in an additive way. In our case,
this means that they should be additive for incoherent sources
of light. Then standard linear algebra could be applied. We
thus define a Stokes vector with four parameters I , M , C and
S, for light propagating in the z direction, where I is the total
intensity, M is the difference in intensity for a polarizer along
the x-axis and one along the y-axis, C is the difference in
intensity for polarizers set at ±45◦ to the x-axis and S is the

difference in intensity between left-handed and right-handed
polarized light. These Stokes parameters could be written as
a 4-vector: 


I

M

C

S


 . (1)

2.2. The Poincaré sphere

Assume that the light is composed of two parts, one
unpolarized with intensity Iu and one fully polarized with
intensity Ip. The polarization of polarized light can be
uniquely described by a point on the Poincaré sphere with
unit radius (see [4] and figure 1), with the coordinates x, y and
z. The Poincaré sphere can give a visual and intuitive picture
of the action of different polarization components. We can
now identify the Stokes parameters with the Poincaré sphere
coordinates in the following way:

I ≡ Iu + Ip

M ≡ Ipx

C ≡ Ipy

S ≡ Ipz. (2)

2.3. The Mueller matrix

An arbitrary optical-polarization component could be
described by a 4 × 4 matrix, connecting the Stokes vector
for the entering light with the Stokes vector for the transmitted
light: 


I

M

C

S



out

= A



I

M

C

S



in

(3)

where A is a 4 × 4 matrix, denoted the Mueller matrix,
characterizing the component. Let Aij be the matrix elements
of the Mueller matrix. It is convenient to let the indices of the
elements of the Mueller matrix and related matrices run from
zero to three. A good reference article about polarimetry and
the Mueller matrix has been written by Chipman [5].

The general Mueller matrix can be seen as a productPHU

of three real matricesP ,H andU , with different mathematical
properties and different physical interpretations. P is a
symmetrical matrix, representing a general partial-polarizing
component. H represents a general depolarizing component.
U is an orthogonal matrix and represents a generalized retarder.
This factorization has been shown earlier by Lu and Chipman
[6]. We can obtain alternative factorizations of the Mueller
matrix by forming all possible permutations of P , H and U .
Which permutation to choose is a matter of taste.

2.4. The polarizing part of the Mueller matrix

The general partial polarizer P , a diattenuator, is given by the
following 4 × 4 matrix (see [6]):

P = 1

1 + w

(
1 wn†

wn MD

)
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Figure 2. The fixed-point axis for a generalized retarder: (a) the
Poincaré sphere of the incoming light, (b) a retardation plate with a
local reference frame in real space and (c) the Poincaré sphere for
the transmitted light. The action of the retarder plate is to rotate the
Poincaré sphere around a fixed-point axis ω, characterized by a
latitude angle θ and a longitude (azimuthal) angle φ, see (d). For the
retarder plate, one of the directions of vibration in the retarder is
inclined with the angle φ/2 relative to the x-axis in real space.

where

MD = (1 − w2)1/2

( 1 0 0
0 1 0
0 0 1

)

+[1 − (1 − w2)1/2]


 n2

x nxny nxnz
nxny n2

y nynz

nxnz nynz n2
z


 (4)

and † denotes the transpose of the matrix, n = {nx, ny, nz}
represents a unit vector and w is a weight factor, the
polarization weight, between zero and unity.

2.5. The retarder part U of the Mueller matrix

The matrix U can be seen as a rotation of the Poincaré
sphere around a fixed-point axis directed along the unit vector
ω = {ωx, ωy, ωz} = {cosφ sin θ, sin φ sin θ, cos θ}. The rota-
tion angle is the retardation angle δ. We denote θ the latitude
angle and φ the longitude angle, see figure 2.

Then the matrix U can be written in the most general way
as

U =




1 0
0 ω2

x(1 − cos δ) + cos δ
0 ωxωy(1 − cos δ) + ωz sin δ
0 ωxωz(1 − cos δ)− ωy sin δ

0
ωxωy(1 − cos δ)− ωz sin δ
ω2
y(1 − cos δ) + cos δ

ωyωz(1 − cos δ) + ωx sin δ

0
ωxωz(1 − cos δ) + ωy sin δ
ωyωz(1 − cos δ)− ωx sin δ
ω2
z (1 − cos δ) + cos δ


 . (5)

We can see this component as a generalized retardation plate. A
single simple ordinary optical retarder will rotate the Poincaré
sphere around a fixed-point axis parallel to the equatorial plane
and will thus have ωz = 0 and the angle θ equal to 90◦. In

the general case the fixed-point axis could have any direction.
The direction of the fixed-point axis is linked to the sign of the
retardation: we are allowed to change the signs of both at the
same time.

Since the matrix U is orthogonal, it will have four
eigenvalues, all with absolute value unity. We will get two
eigenvalues of unit value, with one eigenvector corresponding
to unpolarized light. The other eigenvector represents
the rotation axis of the Poincaré sphere. The third and
fourth eigenvalues will form a complex-conjugate pair,
with corresponding complex-conjugate eigenvectors. In un-
normalized form the eigenvectors are given by

{1, 0, 0, 0} (unpolarized light)
{0, ωx, ωy, ωz} (the rotation axis)
{0, (−iωy − ωxωz), (iωx − ωyωz), ω

2
x + ω2

y}
({0, 1,−iωz, 0} if ωx = ωy = 0)

{0, (iωy − ωxωz),−(iωx + ωyωz), ω
2
x + ω2

y}
({0, 1, iωz, 0} if ωx = ωy = 0) (6)

with the eigenvalues

1, 1, cos δ + i sin δ, cos δ − i sin δ. (7)

2.6. The depolarization matrix H

The 4 × 4 depolarization matrix H can be written as a block
matrix:

H =
(
H00 H

†
p

	0 Hs

)
(8)

where H00 is a constant, Hp is a three-component vector, 	0 is
a three-component zero vector and Hs is a 3 × 3 symmetrical
matrix.

The matrix H contains contributions from two different
depolarization mechanisms, one via the symmetrical matrix
Hs and the other via the vector Hp. Here we will use the
notation matrix depolarization and vector depolarization to
differentiate between these mechanisms.

The symmetry of Hs implies that there exists a base in
which Hs can be written as a diagonal matrix DH . We can
then write

Hs = UHDHU
†
H (9)

where UH is a 3 × 3 orthogonal matrix, similar in shape to
the lower right-hand corner of U . In the same way as with
the matrix U , the determination of the matrix UH can reveal
characteristic directions in an experimental sample. We can see
that, while U is uniquely determined from the Mueller matrix,
there are 48 different ways to choose the order and sign of
the eigenvectors of Hs if the eigenvalues are dissimilar and
an infinite number of ways if two eigenvalues match. For an
experimental Mueller matrix that depends on one continuous
parameter, for instance time or wavelength, we could easily
obtain discontinuities in UH , if the algorithm for some reason
jumps from one choice of order and sign to another. If
the eigenvalues of H are almost degenerate, we also easily
obtain huge but insignificant fluctuations in the locations of
the eigenvectors.

It can sometimes be useful to have a single parameter that
measures the ability of a component to depolarize light via
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matrix depolarization. One orientation-independent choice of
parameter is

kD = H11 + H22 + H33

3H00
. (10)

For complete depolarization, this parameter is zero, whereas
for no depolarization, it has the value unity. We will denote
this parameter the depolarization strength. It also has a
value in the case when the polarization weight is unity
and it can be used as a quality criterion for polarizers and
retarders. It can also be used to detect the presence of lateral
variations in the geometrical configuration of a liquid-crystal
cell: if different points in the sampled area have different
retardation properties, the average effect will contain matrix
depolarization.

To obtain vector depolarization, it is not enough to average
over different retardation properties. We could instead obtain
vector depolarization if we incoherently add light that has
passed two differently oriented polarizers. Another way is to
let the light pass first a polarizer and then an ideal depolarizer.
In this way, we achieve pure vector depolarization. To
characterize the vector depolarization we can write

Hp = H00wDnD (11)

where nD is a normalized vector and wD , denoted the vector
depolarization weight, can take values between zero and unity.

Which parameters can we extract from P , H and U? The
general Mueller matrixA is built up from 16 parameters. Three
of these are needed for the description of the matrix P , ten for
the description of H (H00 plus three parameters for Hp and
six parameters for Hs) and the remaining three for the matrix
U . From these parameters we can extract three different unit
Poincaré-sphere vectors, one orthogonal vector set and seven
scalar parameters.

2.7. The physical interpretation of Mueller matrix
measurements on liquid-crystal cells

For simplicity, we discuss here only normal incidence of light
on a liquid-crystal cell.

The most easily accessible parts of the Mueller matrix
of a liquid-crystal cell are the retardation angle δ and the
direction of the fixed-point axis, both of which are from the
retarder part of the Mueller matrix. A uniform nematic cell
is optically a retarder, with its slow vibration direction along
the projection of the director on a surface parallel to the cell
walls. A measurement of the longitude angle φ of the fixed-
point axis could then provide us with most of the information
we need to determine the director. The fixed-point axis will in
this case be located on the equator of the Poincaré sphere and
the angular position (longitude angle φ) will be independent
of wavelength. In this way, we can also check whether the
director is uniform. If we rotate the cell by an arbitrary angle,
the measured longitude angle will be changed by double the
amount, while the other parameters will be unaffected.

If instead we have a twist cell, for which the director is
rotated progressively through the cell, then the fixed-point axis
in the general case will be oblique, with a latitude angle which
can take any value. In a way the reverse is also true: if the
fixed-point axis is oblique or passes the poles of the Poincaré

Figure 3. The lower jagged curve for the retardation could be
transformed to the upper smooth curve by a proper choice of offsets
and sign changes.

sphere, the sample being investigated must have some kind of
twist or some other mirror asymmetry. Explicit formulae for
twist-cell Mueller matrices have been calculated by Azzam
[7]. This paper also contains explicit Mueller matrices for
many other cases. For a uniform twist, numerical tests reveal
that the latitude angle θ is strongly dependent on wavelength
and that the longitude angle is constant.

If the fixed-point axis is located at the equator, with
a longitude angle that is wavelength-dependent, this should
indicate that there is a non-uniform but mirror-symmetrical
director profile in the cell, for instance created by boundary
layers. In the general case, without any symmetry, we
could expect the longitude and latitude angles to vary with
wavelength. It is often very useful to be able to check
whether the symmetry of a theoretical model agrees with
real cells; measurement of the Mueller matrix provides us
with one method for performing such a check. If the
symmetry agrees, we could proceed with a direct comparison
of the experimentally obtained Mueller matrix and a numerical
estimate from a theoretical model.

If we calculate or measure the Mueller matrix for a set of
wavelengths and then calculate the retardation and the fixed-
point axis, there is some arbitrariness in the choice of the
sign of the fixed-point axis. This could give discontinuities
or sharp corners in the curves for retardation and fixed-point
axis angles, see figure 3. If we reverse the fixed-point axis,
we should also reverse the sign of the retardation. With
a given sign of the fixed-point axis, an arbitrary multiple
of 2π can be added to the retardation angle. Often it
is possible to choose the signs and phases in such a way
that smooth curves are obtained. By extrapolation to zero
retardation at infinite wavelength, it is often possible to obtain
the absolute retardation at optical wavelengths. In some
cases, the discontinuities cannot be eliminated. For instance,
if the fixed-point axis passes smoothly through a pole, the
longitude angle might change very fast. This can be seen as a
defect of our representation of the spherical angles and has no
physical significance. Another case of discontinuity is when
the retardation is zero or a multiple of 2π . Then the direction
of the fixed-point axis is undetermined and insignificant for the
physics of the system.
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Figure 4. The block scheme for the Mueller matrix spectrometer.

3. Instrumental details

3.1. A Mueller matrix spectrometer

In order to obtain the Mueller matrix of real optical
components, we have built a Mueller matrix spectrometer,
whose operation is based on successive transmission
measurements with 16 different filter combinations. With
this instrument, we can characterize liquid-crystal cells and
other planar optical components for all wavelengths in the
visible range by finding the transmission Mueller matrix.
During the measurement no presumptions about the optical
behaviour are made; therefore, this set-up is best suited for
large amplitude effects. For very small effects or very precise
measurements, more specialized set-ups with more limited
measurement ranges could be more appropriate. A block
scheme for our instrument is shown in figure 4.

Using a xenon flash lamp as the light source, we
can perform fast measurements of repetitive processes,
synchronized with a switching voltage applied to a liquid-
crystal cell. The main energy of the flash is emitted within
1 µs. The xenon flash lamp gives a very high light intensity
confined to a small area, which allows measurements of
small areas within the liquid-crystal cell (a round spot with
diameter 160 µm). To obtain better statistics, typically
100 flashes are used for each filter setting in a measurement.
At the other end of the light path there is an Oriel MS125
1/8 m Spectrograph with an InstaSpec photodiode array (PDA)
detection system. With this, we could measure the intensity
of the transmitted light with approximately 1 nm resolution
in wavelength. In our measurements, we collect data for
every fifth nanometre, which gives 92 different wavelengths
within the visible and near-infrared range, from 380 to
835 nm. The reproducibility of the measured transmissions
is typically within 1%. The parallelism of the sampling
light is ±2.5◦ at the liquid crystal. The polarization of the
light is controlled by two Glan–Thompson prisms together
with polarization-turning components on two step-motor-
controlled filter sledges, one before the sample and one after
the sample. By using translating filter sledges instead of
rotating filter holders, we eliminate angular orientation errors.
The polarizing components will be discussed more below.
The xenon discharge arc illuminates a small aperture. The
focusing optics forms a first image of the aperture inside the
first Glan–Thompson prism and a second image at the sample.

An image of the sample is then formed at an inclined mirror
with a small elliptical hole in it. By observation of the mirror
through a microscope eyepiece, it is possible to check where
in the sample the measurement is made. A circular image of
the elliptical hole is then formed at the entrance slot of the
spectrograph. The spectrograph finally maps the entrance slot
on the PDA detector at the spectrograph exit in such a way that
each detector element sees only one wavelength of light.

All the optical equipment is mounted on a 1500 mm Linos
Photonics’ FLS 95 Optical Rail, so the space required is one
tabletop. Vibration damping and elimination of ambient light
are not required. The optical components are arranged as
modules according to the block scheme, such that each module
is built on one or two FLS 95 carriers. 10 mm custom-made
mounting plates have been used to mount standard components
from the Linos Photonics Microbench on the carriers. In this
way, the construction has been rendered compact and sturdy,
while at the same time it has been possible to include the
appropriate adjustment possibilities in the design, which was
implemented in AutoCAD.

3.2. How to measure the Mueller matrix for a spectrum of
different wavelengths

To measure the Mueller matrix of a transparent plate of some
kind, we could, according to Stokes, perform transmission
measurements for incoming unpolarized light, for horizontally
polarized light, for linearly polarized light polarized 45◦

to the horizontal and for left-handed circularly polarized
light. For each kind of incoming light we should perform
four measurements of corresponding types of outgoing light,
giving 16 measurements in total. Two things make this
approach difficult in a situation in which we want to perform
measurements at several wavelengths. In the experimental
situation in which we want to use gratings to generate or
analyse different wavelengths, it will be difficult to maintain
the integrity of unpolarized light. We also have to find
good achromatic retardation plates to generate the desired
polarizations. To avoid the presence of unpolarized light,
we suggest the use of four different types of fully polarized
light instead of Stokes’ choice and then one could perform a
transformation of the experimental data to obtain the Mueller
matrix. To obtain maximal experimental resolution, we should
use four different polarizations, located at the corners of a
regular tetrahedron inscribed in the Poincaré sphere. Two of
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the points could be chosen at the equator, where they represent
linear polarization along two different directions. The other
two points represent right-handed and left-handed elliptical
polarization. In spherical angles {θ, φ} expressed in degrees,
the tetrahedron points are given by {90, 0}, {90, 109.471},
{35.2644,−125.264} and {144.736,−125.264}. We have
chosen to combine cheap and simple polymeric sheet retarders
to obtain approximately achromatic retardation plates. The
drawback is then that the transformation matrices used
for going from experimental data to the Mueller matrix
representation become wavelength-dependent. The sheet
retarders have a retardation that is of the ‘zeroth-order’ type,
which means that the retardation for a typical λ/2 plate varies
smoothly from 141◦ at 780 nm to 255◦ at 380 nm. Two
or three such plates can be combined in such a way that
the combination is less wavelength-dependent than are the
individual elements [8, 9]. To explicitly define the position
of these filters, we define a right-handed coordinate system
for the experimental set-up, with the x-axis vertical and the
z-axis along the direction of the light beam. The second Glan–
Thompson prism is oriented to transmit light with vertical
polarization. The second filter sledge has one filter position
for each tetrahedron point. The first filter position is empty.
The second filter position contains two λ/2 plates, oriented
with their fast axes at the polar angles 13.68◦ and 41.05◦. The
third filter position contains two λ/2 plates followed by one
λ/4 plate, at angles −15.00◦, −32.63◦ and −62.63◦. The
fourth filter position contains the same set of retardation plates
as the third filter position, but with components rotated by
90◦. The first Glan–Thompson prism and the filters in the first
filter sledge are mounted to give maximum transmission when
they are combined with the corresponding component in the
second filter sledge. The first Glan–Thomson prism is thus
also oriented to transmit vertical polarization. The spectrum
obtained for parallel Glan–Thompson prisms, without any
other polarizing or birefringent elements in the light path, can
be used for the normalization of the other spectra.

Suppose that we make a measurement of an optical
component, measuring the transmission for all of the 16
different combinations of filter positions. We collect the
measured values in a matrix Rij , where the first index i

corresponds to the position in the first filter sledge and the
second index j corresponds to the position in the second filter
sledge. We can normalizeRij in such a way that parallel Glan–
Thompson prisms give a transmission of unity. In terms of the
Mueller matrix A of the optical component and the Mueller
matrices A(1i) and A(2j) of the filters in the filter sledges, the
matrix Rij can be written as

Rij = 1

2
( 1 1 0 0 ) A(2j)AA(1i)




1
1
0
0


 . (12)

This gives a set of 16 equations, one for each choice of input
filter i and output filter j . We can rearrange these 16 equations
as one matrix equation by writing

2R† = G2AG1 (13)

where G1 and G2 are two 4 × 4 matrices. Each column in G1

characterizes one filter in the first filter set and each row of G2

characterizes one filter in the second filter set. Since the first
filter position in each filter set is empty, the first column of G1

will contain the elements 1, 1, 0 and 0, whereas the first row of
G2 will contain the elements 1, 1, 0 and 0. If we know G1 and
G2 for each wavelength, we can easily calculate the Mueller
matrix A of the optical component.

3.3. Calibration of the filter sets

The matrices G1 and G2 each contain 12 variables, which
we need to determine in order to be able to evaluate the
measurements. If we had a calibrated Mueller matrix
instrument, we could easily measure the properties of the
filter. However, how should we calibrate an instrument if
we have no sister instrument available? It is not sufficient
to measure the properties of the set-up without any optical
component inserted, since that will only give 16 constants
from which to determine 24 variables. If we also measure
the properties of an optical component (i.e. a retardation
plate), we add 16 unknown variables and gain 16 measurement
values. We have then 40 variables and 32 measurements,
still too few measurements. To add more measurements,
we can rotate the optical component by a known angle and
repeat the measurement, since we know how the Mueller
matrix is transformed by a rotation. We have used three
angular positions, 45◦ apart, of a retardation plate, to obtain
64 measurement values in total, which should be enough to
determine the values of the 40 variables. Then the problem is
over-specified, so we can rewrite it as a minimization problem,
wherein we minimize an error function with respect to the
40 variables. If we define a function named ‘Squaresum’ of a
matrix as the sum of the squares of the elements, we can define
both an input error fi for a measurement as

fi = Squaresum(R† −G2AG1/2) (14)

and an output error fo as

fo = Squaresum(A− 2G−1
2 R†G−1

1 ). (15)

To make the variables converge to physically reasonable
values, we can minimize the sum of the input and output errors
for the measurements. We denote the 40 variables g1 to g24

and m00 to m33 and let

G1 =




1 g1 g5 g9

1 g2 g6 g10

0 g3 g7 g11

0 g4 g8 g12




G2 =




1 1 0 0
g13 g14 g15 g16

g17 g18 g19 g20

g21 g22 g23 g24


 (16)

and let the Mueller matrix of the optical component be defined
by

A =



m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33


 . (17)

We know that there are some physical limits on the possible
values of these 40 variables and, to find a proper minimum, we
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can add some positive ‘penalty’ functions if the variables go
outside the physical limits during the minimization. We have
the following inequalities for the variables g1 to g24:

(g2
2 + g2

3 + g2
4)

1/2 � g1 � 1

(g2
6 + g2

7 + g2
8)

1/2 � g5 � 1

(g2
10 + g2

11 + g2
12)

1/2 � g9 � 1

(g2
14 + g2

15 + g2
16)

1/2 � g13 � 1

(g2
18 + g2

19 + g2
20)

1/2 � g17 � 1

(g2
22 + g2

23 + g2
24)

1/2 � g21 � 1. (18)

The elements of a physically realizable Mueller matrix are
subject to the following restrictions, derived by Givens and
Kostinski [10] and Gil [11].

(i) Let G be the diagonal matrix with the diagonal elements
(1, −1, −1, −1). Then the eigenvalues of GA†GA
should be real, and the eigenvector (s0, s1, s2, s3)
corresponding to the largest eigenvalue should be
a possible Stokes vector, so that the polarization
ρ = (s2

1 + s2
2 + s2

3 )
1/2/s0 � 1. Then the Mueller matrix

maps Stokes vectors onto Stokes vectors.
(ii) For a passive optical device, we require that the intensity

of any Stokes vector should not increase, which leads to
the conditions

(m2
01 + m2

02 + m2
03)

1/2 � m00 � 1
−(m2

01 + m2
02 + m2

03)
1/2. (19)

(iii) An optical component, which can be seen as an average
over pure Mueller matrices (without depolarization), is
subject to the following restriction [11]:

m00 � 1 − (m2
10 + m2

20 + m2
30)

1/2. (20)

As a penalty function, to force the variables back to physical
reality, we can choose

f (x) =
[

0 for x � 0√
x for x > 0

]
. (21)

This function has the benefit of having an infinite derivative at
x = 0+, which means that the penalty function has a reasonable
chance of keeping the variables inside the physical limits,
even if the function to be minimized has a finite slope outside
the allowed region. If we still found a minimum outside the
physical limits, we could increase the strength of the penalty,
by multiplying the penalty function by a constant factor, and
perform a new optimization. The penalty function for the first
inequality in (18) can be chosen as

f (g2
2 + g2

3 + g2
4 − g2

1). (22)

Similar penalty functions can be chosen for the other
inequalities. The input and output error functions and suitable
penalty functions can be added to obtain a ‘cost function’,
which can be minimized to find appropriate values for the
variablesg1 tog24 andm00 tom33 for each wavelength. Finding
the minimum for each wavelength of the cost function with
respect to 40 variables would have exceeded any computer
time account a few years ago, but now it is possible to approach
the optimal values in finite time on a PC. After minimization
of the cost function, we seem to get a reliable calibration of
the filters from the wavelength 410 nm and upwards. Below
410 nm, the transmission of the filters is low and the matrices
involved become ill conditioned.

Figure 5. Retardation angles for the three retardation plates.

Figure 6. The longitude angles as functions of wavelength for the
three retarders.

4. Experimental details

4.1. Measurements on retardation plates

As an example of an application of the Mueller matrix
spectrometer, we have measured the properties of Polaroid
optical retarders with nominal retardations 140±20, 280±20
and 560 ± 25 nm. The nominal values of the retardations
should be valid for light with the wavelength 560 nm, but,
due to the physical properties of the polymer material, these
values for nominal retardation are approximately valid over a
wide wavelength range. To obtain the retardation in degrees,
we should multiply the nominal retardation by 360 and divide
by the wavelength in nanometres. These optical retarders are
delivered as transparent plastic sheets, similar in appearance to
polarizing film. They have been used in the filters in the filter
sledges in the Mueller matrix spectrometer.

The measured retardations of the three retardation plates
are shown in figure 5. The retardations at the wavelength
560 nm have been measured to be 101◦, 187◦ and 346◦, which
correspond to 156, 291 and 538 nm.

The angular position on the Poincaré sphere of the fast
vibration direction can also be determined. The latitude angle
for each of the three plates is very near 90◦, as it should be
for retardation plates. The longitude angles are shown in
figure 6. For the 560 nm plate, the retardation passes 360◦

at the wavelength 538 nm and, at that wavelength, the angular
position of the fast vibration direction is arbitrary. Therefore,
one could expect discontinuities in the measured position of
the vibration direction at this wavelength.

The orthogonal matrix U is the most significant part of
the Mueller matrix, so a discussion about the depolarizing
and polarizing parts for these retardation plates would be too
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Figure 7. The geometry of the cell. The left-hand cone illustrates
the case when the smectic layer normal k̂ is parallel to the substrate.
The right-hand cone corresponds to tilted smectic layers, with an
angle of 7◦ between k̂ and the substrate. The electrical field is
parallel to ẑ.

technical and too uninteresting for the intended readers of this
paper.

4.2. Measurements on ferroelectric-liquid-crystal cells

As another example to illustrate the potential of the Mueller
matrix method, we have performed measurements on a
ferroelectric-liquid-crystal cell in the smectic-C phase. In this
phase the elongated molecules are locally aligned parallel and
tilted relative to the smectic layer normal k̂. At a specific
temperature, the tilt angle is constant, but there are normally
long-range distortions of the tilt direction. The local major
axis of the optical index ellipsoid (the smectic-C n̂-director)
is parallel to the average local long axis of the molecules.
Different wavelengths of light might see slightly different tilt
angles of the molecules. At a specific temperature, all possible
directions of the smectic-C n̂-director form a cone around
the layer normal. Often, the tilt direction is not constant
throughout the cell. Instead it will form a continuous function
of the spatial coordinates (‘the geometrical configuration’)
and we do not know exactly what the continuous function
for the tilt direction looks like. Thus, we cannot exactly
predict the optical behaviour. Instead, we need to work in the
reverse direction: we first measure the optical properties and
then extract useful information that tells us something about
the geometrical configuration. The cell of this study was of
approximate thickness 1.9 µm, filled with the chiral smectic-
C substance FELIX-014 from Hoechst. The cell was fabricated
at the company FLC Optics AB, which was later incorporated
into the company Radians Innova in Göteborg. The surface
treatment was parallel rubbed polyimide, which should give
an orientation with the smectic layer normal parallel or almost
parallel to the substrate (bookshelf geometry, see figure 7). The
cell was initially ‘activated’ by application of a ±20 V square
wave voltage for some few seconds. The measurement was
performed at room temperature (22 ◦C). The cell was oriented
in such a way that a fixed-point axis along the smectic layer
normal would have a longitude angle of 180◦. This longitude
angle is directly connected to the projection of the smectic-C n̂-
director onto the substrate plane: a rotation of the n̂-director
by some angle around the substrate normal will change the
longitude angle by double the amount (cf figure 2).

To the cell we applied alternating positive and negative
pulses, each pulse being followed by a holding voltage of
the same sign, see figure 8. The repetition frequency was
20 Hz. The pulse length τp was 25 or 75 µs, the pulse height

Figure 8. The waveform of the applied voltage. The figure is not
drawn to scale: the pulse length τp is 25 or 75 µs, while the
repetition period is 50 ms. The pulse height Up is ±15 or ±30 V,
while the holding voltage Uh is 0, ±0.5 or ±1.0 V.

Up was ±15 or ±30 V and the holding voltage Uh was 0,
±0.5 or ±1 V. This provides twelve different combinations
of pulse length, pulse height and holding voltage. For each
such combination, Mueller matrix measurements have been
performed at the following time positions in microseconds,
measured relative to the start of the switch-down pulse: −50,
0, 5, 10, 20, 30, 60, 100, 200, 400, 1000, 2000, 4000, 8000,
16000, 24000, 24950, 25000, 25005, 25010, 25020, 25030,
25060, 25100, 25200, 25400, 26000, 27000, 29000, 33000,
41000 and 49000.

This gives 32 different time positions. Since the
duration of the flash is approximately 1 µs, we obtained
dynamic information about the switching behaviour. In each
measurement the 16 components of the Mueller matrix have
been measured at 92 different wavelengths, so we ended
up with 12 × 32 × 92 × 16 = 565248 numbers in total,
which of course represent more data than it is possible to
comprehend. To understand anything from the measurements
we have extracted the general features. If not stated otherwise,
experimental values below are measured at the wavelength
600 nm.

4.2.1. Essentially one up and one down state. First, we can
see that the longitude angle of the fixed-point axis for light of
wavelength 600 nm switches from an angle near 138◦ to an
angle near 223◦ for all members of the series, except for the
case of incomplete switching when τp was 25µs and the pulse
heightUp was ±15 V. In this case, when the holding voltageUh

was 0 V, the longitude angle varies between 140◦ and 197◦, with
relaxation to a longitude angle of 147◦ both after the positive
pulse and after the negative pulse. The holding voltage of
±0.5 V gives a longitude angle between 141◦ and 180◦, with
slow unfinished relaxation towards two different states after
the up pulse and the down pulse. The holding voltage ±1 V
gives full switching between 141◦ and 220◦, but the pulses
are not strong enough to switch the cell completely and the
longitude angle reaches the end positions by slow relaxation
just before the next pulse. In a simple model, with uniform
orientation and rigid motion of the n̂-director, a swing of 85◦

of the fixed-point axis corresponds to movement around a cone
with cone angle 21.25◦.

4.2.2. A non-constant geometrical configuration. If we
compare the longitude angle of the fixed-point axis at different
wavelengths, we see some dispersion. To obtain a numerical
value for the dispersion of the longitude angle, we use the
difference between the longitude angle at 700 nm and the
longitude angle at 450 nm. For a uniformly oriented smectic-
C liquid crystal, the direction of one principal dielectric axis
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Figure 9. Longitude angle dispersion versus longitude angle (at 600 nm) for all members of the measurement series. The arrows show the
time direction. This figure and also the next are intended to illustrate the spread of data and the general features common to all the different
applied waveforms, rather than the less significant differences between the different waveforms.

agrees with the n̂-director. The tilt angle between this direction
and the smectic layer normal may depend on the wavelength of
the light. If the liquid crystal in our cell is oriented uniformly,
we should expect a linear relation between the longitude angle
for a fixed wavelength and the wavelength dispersion of the
longitude angle. This kind of dispersion we call intrinsic
dispersion. However, the relation we see (see figure 9) is more
complicated, with different signs of the dispersion during the
up and down pulses. In some cases we can also see a slow
relaxation between the pulses, which changes the dispersion
while the longitude angle remains essentially constant. From
this we conclude that there is a non-constant geometrical
configuration, with variation along a direction orthogonal to
the substrate plates. Moreover, the geometrical configuration
during the up pulses is different from the configuration during
the down pulses, even when the longitude angle is the same.
Dispersion due to a non-constant geometrical configuration we
call configurational dispersion.

A simple numerical simulation indicates that the liquid
crystal near the substrates switches before the region in the
middle of the sample.

4.2.3. Nearly optical mirror symmetry. When the
geometrical configuration has mirror symmetry optically, the
latitude angle of the fixed-point axis is 90◦. On the other
hand, for a twisted configuration with a definite sign, we would
expect a latitude angle that is significantly different from 90◦.
We measure a latitude angle between 89◦ and 93◦, which
makes a strongly twisted configuration improbable. For our
cell, we can thus rule out strong polar boundary conditions,
which would give an optically twisted situation. We could
also rule out the chevron SSFLC cell configuration proposed
by Lagerwall et al [12], which displays a strong splaying of
the polarization, implying a twist of the principal optical axes.
There is a weak asymmetry of the latitude angle around the
value 90◦, which might imply weakly polar (chiral) boundary
conditions, but that might be a measurement artefact.

4.2.4. The change in retardation is small: do we have tilted
smectic layers? The measurements reveal a relation between
the longitude angle and the retardation, see figure 10. The

retardation is largest about 5◦ from the extreme values of the
longitude angle and smallest in the middle at the longitude
180◦. We could try to model this behaviour by cone switching,
assuming that the smectic layer normal k̂ is parallel to the
substrates and that the n̂-director starts in the substrate plane
and follows a cone path out of the substrate plane and back
again. However, if we assume that there occurs a rigid
movement (with constant configuration) of the n̂-director and
use reasonable values of the birefringence, we would get at
least twice the change in retardation that we have measured.
It is also difficult to get this low change in retardation by
assuming that the behaviours of the boundary layers and the
bulk layer differ.

If we assume the presence of tilted smectic layers, we
could easily explain the general behaviour. With tilted
layers, with k̂ oblique to the substrate plane, the n̂-director
could move around the cone in two ways: either it begins
by moving away from the substrate plane or it begins by
moving towards the substrate plane. The measured change
in retardation is consistent with a movement whereby the n̂-
director passes the substrate plane twice, with a layer tilt angle
of approximately 7◦ between the smectic layer normal and the
substrate plane. In figure 11 the retardation is drawn for two
constant configurations: one with an angle of 6.6◦ between the
smectic layer normal and the substrate plane and one with an
angle of 8.8◦. (The cone angle was assumed to be 21.22◦ for
the 6.6◦ case and 21.12◦ for the 8.8◦ case. The thickness was
assumed to be 1900 nm, the wavelength of light was assumed
to be 600 nm, the ordinary refractive index was assumed to be
1.5 and the birefringence was assumed to be 0.15728.) Most
of the experimental points are located in the neighbourhood of
these curves. We have already found that we have to assume a
non-constant geometrical configuration, but figure 10 indicates
that the main feature is cone switching around one of the sides
of a tilted cone. A careful study of figure 10 reveals a slight
asymmetry between the rightmost and leftmost data points:
lower values of retardation are reached on the left-hand side.
This could indicate that there is a deformed configuration at
the left-hand end.

To find the sign of the layer tilt and differentiate between
uniform tilt and a chevron configuration, Mueller matrix
measurements with oblique incidence of light could be used.
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Figure 10. Retardation versus longitude angle (at 600 nm) for all members of the measurement series.

Figure 11. Calculated retardation versus longitude angle (at 600 nm) for two angles of layer tilt.

For the actual cell, such measurements have not been made,
since the layer tilt was revealed first when the measurements
were terminated.

4.2.5. Break-up in domains during switching. The
depolarization weight is above 0.98 between the pulses, but
starts to decrease immediately after the start of the pulses for
the ±30 V pulses and sometimes falls as low as 0.93. This
indicates that the liquid crystal breaks up in domains during
the switching. The shape of the depolarization part of the
Mueller matrix indicates that the different domains differ in
their longitude angle, indicating that there is a varying delay
time for the polarization switchover in different regions of the
area. This time jitter could be due to small variations in the
boundary conditions, since the time delay should be sensitive
to such variations. There is no significant difference in the
depolarization weight between switching up and switching
down.

4.2.6. The optical change is not solely due to movement
of domain borders. Imagine a situation in which we have
‘up’ domains and ‘down’ domains and the switching from
the whole sample up to the whole sample down occurs via
simple movements of the domain borders. In such a situation,
the Mueller matrix of the intermediate states should be a

weighted sum of the Mueller matrices of the extreme positions.
This would give a much lower depolarization strength than
the measured value, so such a model cannot explain the
measurements.

4.2.7. Fast relaxation after the pulses. The longitude angle
reaches its extreme values during the pulses. After the pulse,
there is a fast relaxation towards a state with a longitude angle
nearer 180◦. One millisecond after the start of the pulse
the relaxation is about 9◦ for zero holding voltage, about 5◦

for ±0.5 V holding voltage and about 2◦ for ±1 V holding
voltage, all in the case of complete switching. In the case
of incomplete switching, the relaxation is considerably larger.
During this relaxation, the longitude angle dispersion is almost
constant, while the retardation increases to its maximum value,
which indicates that the n̂-director becomes more parallel to
the substrates.

4.2.8. Very slow relaxation when switching is incomplete
and when there is a holding voltage. When the switching
is incomplete and a holding voltage is present, there is a
slow relaxation of the longitude angle towards the extreme
values. For 1 V holding voltage the relaxation speed is
around 3000 ◦ s−1 near the longitude angle 180◦, whereas
the relaxation during the 15 V pulses reaches values near
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(106)◦ s−1 at the same relaxation angle. The slow relaxation
speed in the presence of the holding voltage implies the
presence of ionic screening. Low values of the depolarization
strength during the slow relaxation imply domain break-up and
indicate that relaxation occurs by the movement of the domain
borders.

4.2.9. Well-aligned states after the fast relaxation. If we
study the retardation data, the maximum values of retardation
are found approximately 5◦ above the minimum longitude
angle and approximately 5◦ below the maximum longitude
angle, at data points located in time after the fast relaxation
after the pulses. At these points, the latitude angle is very
near 90◦, indicating that there is good mirror symmetry. We
can conclude that the states reached after the fast relaxation
are quite well aligned, but with the fixed-point axis a little bit
away from the extreme values of the longitude angle. Some
configurational dispersion remains and this dispersion seems
to be more pronounced for the left-hand ‘down’ state, with
longitude angle near 140◦, than it is for the right-hand ‘up’
state, with longitude angle near 220◦. This indicates that there
is a small asymmetry between the ‘down’ state and the ‘up’
state. We can also see this asymmetry in the start-up time for
switching. The time taken to reach the longitude angle 180◦ is
usually much shorter when one starts from the ‘up’ state than
it is when one starts from the ‘down’ state.

4.2.10. Measurements on the cell at rest also reveal an
up–down asymmetry. Between the various measurement
series, the cell was disconnected from the voltage source and
Mueller matrix measurements were performed on the cell
on ten occasions. Eight of these occasions gave retardation
176.4 ± 1.1◦, longitude angle 146.2 ± 0.5◦, latitude angle
90.8 ± 0.6◦ and dispersion 9 ± 1◦. These eight measurements
seem to represent the same physical down state. Two of
the measurements displayed a quite different behaviour with
mirror asymmetry: retardation 168.4 ± 1◦, longitude angle
209±1◦, latitude angle 80.1±1.1◦ and dispersion−13.3±1.2◦.
This asymmetry implies that some (unintentional) asymmetry
was introduced during the cell preparation.

4.2.11. Are there fixed boundary conditions? One possible
model for the geometrical configuration of the liquid crystal
is to assume that there are fixed boundary conditions at the
surfaces. It is difficult to interpret the measurements as
indications of fixed boundary conditions.

4.2.12. A model for the switching behaviour. An exact model
for the switching behaviour requires detailed mathematical

simulation of the configuration and the optical properties,
which would expand the scope of this paper too much.
However, we can see what the starting points should be. With
tilted smectic layers, the intersection between the smectic
cone and the substrate planes defines two positions where the
smectic-C n̂-director is parallel to the substrates. In the ‘up’
state, the configuration seems to be constant and near one of
these positions for the n̂-director. However, this state does
not seem to have long-term stability: when it is disconnected,
it seems to relax to a twisted state with high dispersion and
low retardation. This indicates that boundary conditions near
at least one of the substrates gradually change. The ‘down’
state, which seems to be more stable, is deformed. Thus,
the boundary conditions for the n̂-director in the ‘down’ state
cannot be exactly the same on both the substrates, and cannot
be exactly in the other position parallel to the substrates.
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